1. Calculer les dérivées des fonctions suivantes

$$f_1(x) = \frac{2x+3}{x^2+4} \qquad f_2(x) = \frac{1}{x}e^{-3x} \qquad f_3(x) = \ln\frac{1}{\sqrt{x^2+4}} \qquad f_4(x) = e^{-x}\sin(2x)$$

$$f_1'(x) = \frac{2(x^2+4) - (2x+3)(2x)}{(x^2+4)^2} = \frac{-2x^2 - 6x + 8}{(x^2+4)^2}$$

$$f_2'(x) = \frac{-1}{x^2}e^{-3x} + \frac{1}{x}(-3)e^{-3x} = \boxed{-\frac{(1+3x)e^{-3x}}{x^2}}$$

$$f_3(x) = -\frac{1}{2}\ln(x^2+4) \text{ donc } \boxed{f_3'(x) = \frac{-x}{x^2+4}}$$

$$f_4(x) = e^{-x}\sin(2x) \text{ donc } f_4'(x) = -e^{-x}\sin(2x) + e^{-2x}2\cos(2x) = \boxed{e^{-2x}\left(2\cos(2x) - \sin(2x)\right)}$$

2. Étudier les variations de la fonction f définie sur \mathbb{R} par : $f(x) = (x^2 - 3x + 1)e^{-x}$

On a:
$$f'(x) = (2x-3)^e - x - (x^2 - 3x + 1)e^{-x} = (-x^2 + 5x - 4)e^{-x}$$

Le signe de e^{-x} est positif.

Étudions le signe de $(-x^2 + 5x - 4)$. Son discriminant est $\Delta = 25 - 16 = 9 > 0$

Il y a deux racines : $\frac{-5 \pm 3}{-2}$ c'est à dire 4 et 1

x	$-\infty$		1		4		$+\infty$
e^{-3x}		+		+		+	
$(-x^2+5x-4)$		_	0	+	0	_	
f'(x)		_	0	+	0	_	
f(x)			f(1)		f(4)		•

3. Déterminer les réels a, b et c pour que

$$F(x) = (ax^2 + bx + c)^{-2x}$$
 soit une primitive de $f(x) = (1 - 5x^2)e^{-2x}$

On calcule
$$F'(x) = (-2ax^2 + (2a - 2b)x + b - 2c)e^{-2x}$$

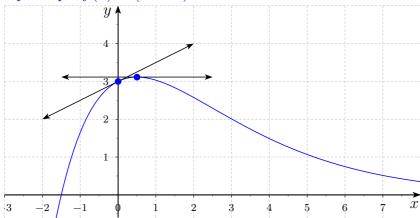
que l'on compare à
$$f(x) = (-5x^2 + 0x + 1)e^{-2x}$$

Puis on identifie les termes de même degré : -2a = -5 et 2a - 2b = 0 et b - 2c = 1

donc
$$a = \frac{5}{2}$$
 et $b = a = \frac{5}{2}$ et enfin $c = \frac{b-1}{2} = \frac{3}{4}$

On a obtenu que
$$f(x) = \left(\frac{5}{2}x^2 + \frac{5}{2}x + \frac{3}{4}\right)e^{-2x}$$

4. En utilisant le graphique, lire f(0), f'(0) et $f'(\frac{1}{2})$. Puis en déduire les valeurs de a, b et c pour que $f(x) = (ax + b)e^{cx}$



f(0) = 3 et $f'(0) = \frac{1}{2}$ c'est la pente de la tangente en 0

 $f'(\frac{1}{2}) = 0$ c'est la pente de la tangente en $\frac{1}{2}$

Or:
$$f(x) = (ax + b)e^{cx}$$
 donc $f(0) = b$ donc $b = 3$
et $f'(x) = (acx + a + bc)e^{cx}$ donc $f'(0) = a - b$ donc $a + 3c = \frac{1}{2}$
enfin $f'(\frac{1}{2}) = 0$ donc $0 = \frac{1}{2}ac + a + 3c = 0$

Les deux dernières égalités donnent $0 = \frac{1}{2}ac + \frac{1}{2}$ donc ac = -1

Puisque $a + 3c = \frac{1}{2}$, en multipliant par a cela donne $a^2 - 3 = \frac{1}{2}a$ donc $a^2 - \frac{1}{2}a - 3 = 0$

On obtient : a = 2 ou $a = \frac{-3}{2}$

Puisque $\lim_{x\to-\infty} f(x) < 0$ seule la valeur a=2 convient. Puis $c=\frac{-1}{2}$

On a obtenu que $f(x) = (2x + 3)e^{-x/2}$