exo006c

CIRA1

On considère la fonction définie sur \mathbb{R} par $f(x) = 4(5x - 1)e^{-2x}$.

1. Calculer les limites de f en $-\infty$ et en $+\infty$.

$$f(x) = \frac{20x}{e^{2x}} - \frac{4}{e^{2x}}$$

Par croissances comparées de x par rapport à e^{2x} on a : $\lim_{x \to +\infty} \frac{20x}{e^{2x}} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$ $\lim_{x \to -\infty} 4(5x - 1) = -\infty$ et $\lim_{x \to -\infty} e^{-x} = +\infty$ donc par produit $\lim_{x \to -\infty} f(x) = -\infty$

2. Montrer que $f'(x) = 4(7-10x)e^{-2x}$.

$$f$$
 est un produit donc $f'(x)=4(5e^{-2x}+(5x-1)(-2)e^{-2x})=4e^{-2x}(5-10x+2)=4(7-10x)e^{-2x}$

3. Étudier le signe de f'(x) et établir le tableau des variations de f.

(7-10x) est affine décroissant, il s'annule en $x=\frac{7}{10}$. Par ailleurs e^{-2x} reste positif

Donc on a:

Donc on a	:				
x	0		$\frac{7}{10}$		$+\infty$
7-10x		+	0	_	
e^{-2x}		+		+	
f'(x)		+	0	_	
f(x)	$-\infty$		max		<u> </u>

4. Montrer que f admet un maximum, en donner la valeur exacte et une valeur approchée à 10^{-2} près.

Puisque f est strictement croissante dur $]-\infty; \frac{7}{10}[$ puis strictement décroissante sur $]\frac{7}{10}; +\infty[$, la fonction f admet un maximum local en $x=\frac{7}{10}$

dont la valeur est $f(\frac{7}{10}) = 10e^{-\frac{7}{5}} \approx 2,47$

5. Établir qu'une équation de la tangente à C_f au point d'abscisse $x = \frac{6}{5}$ est

$$y = 4e^{-12/5}(11 - 5x)$$

On a : $f'(\frac{6}{5}) = -20e^{-\frac{12}{5}}$ et $f(\frac{6}{5}) = 20e^{-\frac{12}{5}}$ donc l'équation de la tangente est

$$y = -20e^{-\frac{12}{5}}\left(x - \frac{6}{5}\right) + 20e^{-\frac{12}{5}} = 20e^{-\frac{12}{5}} \times \left(1 - \frac{x}{5}\right) = 4e^{-\frac{12}{5}}(11 - 5x)$$

6. Déterminer les réels a et b pour que $F(x)=(ax+b)e^{-2x}$ soit une primitives de f sur $\mathbb R$

On a :
$$F'(x) = ae^{-2x} - 2(ax+b)e^{-2x} = e^{-2x}(-2ax+a-2b)$$
 or $F'(x) = f(x) = (20x-4)e^{-2x}$

donc
$$-2a=20$$
 et $a-2b=-4$ c'est à dire $a=-10$ et $b=-3$

On a obtenu qu'une primitive de f est $F(x) = -(10x + 3)e^{-2x}$

7. Soit M>0, en déduire la valeur $I_M=\int_0^M f(x)\mathrm{d}x$ en fonction de M

On a:
$$I_M = \int_0^M f(x) dx = [F(x)]_0^M = -(10M + 3)e^{-2M} + 3$$

8. Quelle est la limite de cette valeur lorsque M tend vers $+\infty$. Que cela représente-t-il?

Par croissances comparées, on a :
$$\lim_{M\to+\infty} (10M+3)e^{-2M} = 0$$
 donc $\lim_{M\to+\infty} I_M = 3$

L'aire sous la courbe de 1/5 à $+\infty$ moins celle de 0 à 1/5 est égale à 3 unités d'aires.

