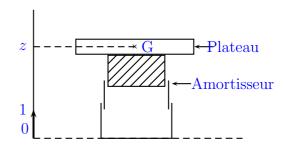
On considère un système mécanique formé d'un plateau soutenu par un amortisseur. Il est représenté sur le schéma ci-contre.

On note z la cote du centre de gravité du plateau. On suppose que z est une fonction de la variable réelle t, définie et deux fois dérivable sur un intervalle de $\mathbb R$ où t représente le temps exprimé en seconde. L'étude de ce système mécanique permet de considérer que la fonction z est solution de l'équation différentielle



$$(E)$$
 : $5z'' + 6z' + z = 2,5$

1. (a) Résoudre sur \mathbb{R} l'équation différentielle 5z'' + 6z' + z = 0.

C'est une équation différentielle linéaire d'ordre 2 sans secon membre, son équation caractéristique est $5r^2+6r+1=0$, elle a pour discriminant $\Delta=36-20=16>0$, elle a donc deux racines $r=\frac{-6-4}{2\times 5}=-1$ et $r=\frac{-6+4}{2\times 5}=\frac{-1}{5}$

D'après le cours sur les équations différentielles,

toutes les solutions de 5z'' + 6z' + z = 0 sont alors les $z(t) = C_1 e^{-t} + C_2 e^{-\frac{t}{5}}$ où C_1 et C_2 sont des constantes réelles quelconques.

(b) Chercher une solution particulière constante de l'équation (E) et en déduire toutes les solutions de (E).

Si $z_p(t)$ est une solution particulière constante alors $z_p(t) = K$ donc $z'_p(t) = 0$ puis $z''_p(t) = 0$ et l'équation différentielle complète devient : 0+0+K=2, 5 donc K=2, 5 Une solution particulière de l'équation 5z'' + 6z' + z = 2, 5 est $z_p(t) = 2$, 5

(c) Donner la solution g de (E) qui vérifie les conditions g(0) = 5 et g'(0) = -1.

Toutes les solutions de 5z'' + 6z' + z = 2,5 sont alors les sommes :

$$z(t) = C_1 e^{-t} + C_2 e^{-\frac{t}{5}} + 2,5$$

où C_1 et C_2 sont des constantes réelles quelconques.

Parmi elles on recherche celle, notée, g qui vérifie g(0) = 0, on a donc $C_1 + C_2 + 2$, $S_1 = 0$ $C_2 + C_3 + 2$, $C_3 = 0$

et
$$g'(t) = -C_1 e^{-t} - \frac{C_2}{5} e^{-\frac{t}{5}} + 0$$

donc g'(0) = -1 donne $-C_1 - \frac{C_2}{5} = -1$ (L_2)

$$(L_1)+$$
 (L_2) donne $C_2=\frac{15}{8}$ puis (L_1) donne $C_1=\frac{5}{8}$

donc $g(t) = \frac{5}{8}e^{-t} + \frac{15}{8}e^{-0.2t} + 2.5$

- 2. On suppose pour la suite du problème que z(t)=f(t), où f est la fonction définie sur l'intervalle $[0\;;\;+\infty[$ par $f(t)=0,625\mathrm{e}^{-t}+1,825\mathrm{e}^{-0,2t}+2,5$
 - (a) Étudier les variations de f.

On a : $f'(t) = -0.625e^{-t} - 0.755e^{-0.2t} + 0 < 0$ donc f est une fonctions strictement décroissante dur \mathbb{R} .

(b) Déterminer la limite de f(t) quand t tend vers $+\infty$.

On a :
$$\lim_{t \to +\infty} -t = -\infty$$
 et $\lim_{t \to +\infty} -0, 2t = -\infty$ or $\lim_{u \to -\infty} e^u = 0$ donc par composition et somme $\lim_{t \to +\infty} f(t) = 0 + 0 + 2, 5 = 2, 5$.

(c) Déduire des deux questions précédentes l'évolution de la cote du point G en fonction du temps t.

D'après l'étude, la fonction f représente la cote de z, elle va donc décroître de 5 vers le valeur 2,5.

(d) On note \mathcal{C} la courbe représentative de f dans un repère orthonormal $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$. Justifier l'existence d'une asymptote à la courbe \mathcal{C} quand t tend vers $+\infty$; en donner une équation.

Puisque $\lim_{t\to +\infty} f(t)=2, 5\in \mathbb{R}$, la droite d'équation z=2,5 est une asymptote horizontale à la courbe représentant la fonction $f:t\mapsto z(t)$.